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An equatorial boundary layer 
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The singularity of the Ekman layer a t  the equator of a rotating gravitating 
sphere makes it difficult to satisfy a prescribed stress boundary condition a t  the 
surface of a layer of liquid on the sphere. The equations of motion are investi- 
gated for a homogeneous ocean with vertical and lateral eddy viscosities. The 
horizontal Coriolis terms are not neglected. A linear equation for the boundary 
layer is obtained and a solution of the equation for the boundary-layer part of 
the velocity field is found in closed form. This is valid in a parameter range which 
includes the previous solutions of Stewartson and Gill as limiting cases. 

1. Introduction 
Investigations into the properties of the flow of a liquid on the surface of a 

rotating sphere, whether abstract studies such as that of Proudman (1956) or 
studies whose motivation is an observational science such as oceanography, 
usually show a change of character near to the sphere’s equator. In this region 
the vertical component of the rotation vector becomes small, so that the thickness 
of the Ekman layer increases indefinitely and the boundary-layer approximation 
fails. 

The equatorial region has been investigated under a number of different 
conditions by several authors, notably Stommel (l960), Carrier (1965), Stewart- 
son (1966) and Gill (1971). If a critical depth 

h, = (v2R/4M2)* 

is defined, where v is the vertical component of eddy viscosity, R is the radius of 
the earth and M is its rate of rotation, the ratio of h, to the thickness h of the 
layer of liquid can be used to relate these models as follows. 

Stommel’s model. Viscous effects are important at all depths of the fluid near 
the equator and the horizontal Coriolis terms are important if h, 9 h. 

Carrier’s model. When h N h, the zeroth-order flow is the same as in Stommel’s 
model but the horizontal Coriolis terms affect the first-order correction to the 
zeroth-order flow. 

Stewartson’s model. When h 9 h, viscous effects are confined to a thin surface 
boundary layer and the horizontal Coriolis terms are crucial. 

These three models all neglect lateral friction. Gill’s model is similar to Stommel’s 
in that the horizontal Coriolos term is neglected, but lateral friction is included 
and the model shows that although the effects of vertical friction are confined to a 
surface boundary layer the effects of lateral friction are important at all depths. 
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The purpose of this paper is to investigate further the linearized equations of 
motion on the assumption that h B h,. The surface stress will be specified, rather 
than the velocity, as this is the condition that applies to the oceans. The effects of 
lateral friction are included so that it is possible to study the transition from 
Stewartson's model to Gill's; at general latitudes it can be ignored but its impor- 
tance increases near the equator as Gill has demonstrated. A solution of boundary- 
layer form can be found for all values of the coefficient of lateral friction, and it is 
possible to obtain an explicit solution for the boundary layer calculated by Gill 
as the limiting case in which the effects of lateral friction entirely mask the 
horizontal component of the Coriolis force. 

2. The boundary-layer equation 
In a region near to the equator in which no variation with longitude is expected 

and h < R, the equations of motion for constant density and constant vertical 
and horizontal eddy viscosities v and 7 can be written approximately as 

and - 

The terms neglected, which include the inertia terms, are expected to be smaller 
than the smallest terms retained, and this can be checked after a solution has 
been found. Here, u, v and w are the velocity components in the directions East, 
North and vertically up, respectively; the co-ordinates are latitude # (which is 
assumed to be small) and z', which has been scaled by the depth of the ocean. The 
function $ has been introduced to satisfy the continuity condition, while x has 
been introduced to provide a symmetric notation. The symbols g, Q andp stand 
for the acceleration due to gravity, the magnitude of the earth's rotation vector 
and pressure at a point in the fluid, respectively. 

If 
N' = x+i$ 

(2.2)-(2.4) may be combined to give 

where Q(q5) is a function of position only. This equation is similar to those pro- 
duced by Stewartson (1966) and Carrier (1965).  
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To study this equation further, N‘ can be rewritten as 

N’ = N I +  N ,  

where N I  is the part of N’ which is non-zero in the interior of the ocean, where 
effects due to the vertical component of eddy viscosity are negligible. This 
contribution can be found by the methods used by Gill (1971), for example. N is 
then the part of N’ which vanishes outside a boundary layer at the surface. A 
similar contribution can be added to N’ for the bottom boundary layer if this has 
to be considered also. The function N then satisfies an equation which is the 
same as (2 .5 )  but without the final term iQ(q5). 

To investigate the orders of magnitude of the various terms, introduce the 
following dimensionless numbers : 

rl = v/2!2h2, r2 = h/R, r3 = 7/2QR2; 

now suppose that variation with respect to z’ takes place over a distance of order 
6, and that with respect to # over a range of latitude of order B .  The orders of the 
terms in ( 2 . 5 )  are in the ratio 

In a surface boundary layer, e is a measure of distance from the equator and SO an 
inspection of this set of ratios will show which terms dominate in the surface layer 
as the equator is approached. The horizontal eddy viscosity which appears in r3 
can be retained as a parameter which may be given any desired value. 

(i) When €8 % &r2, a layer for which S N rfe-4 is obtained. When the effects 
of horizontal eddy viscosity are neglected, this is the Ekman layer. 

(ii) When e = O ( r t r i ) ,  a layer for which 6 - rtr;* = hJh results, and all terms 
of the equation are of importance, with the possible exception of the term in- 
volving r3. 

In the first case the effects of horizontal eddy viscosity are not of importance in 
most applications, but in the second a boundary layer can arise which is domi- 
nated by the horizontal eddy viscosity rather than by the horizontal component 
of the rotation vector. This occurs if r$ 9 rlr.f. It requires a relatively large value 
of the horizontal eddy viscosity and a relatively small value of the vertical eddy 
viscosity t o  satisfy this inequality, so it seems that, although this third possibility 
may be of some interest, it  is preferable to study the problem with both effects 
included. The two extreme cases can then be investigated from the solution 
obtained . 

With the substitutions 

equation ( 2 . 5 )  becomes 

(2.6) 
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3. The surface boundary layer 
If the ocean is driven by a wind stress which is symmetric about the equator 

and does not have a large horizontal gradient there, then N can be scaled so that 
the boundary conditions for which (2 .6)  has to be solved are the following. 

(a)  PN/az2+- 1 as z-to-.  (3.1) 

(b)  N-tO as z-t--00, (3.2) 

since N gives that part of the velocity field which vanishes outside the boundary 
layer, 

(3.3) 
aN - 1 t . i  
-N- exp[z(l+_i)($(y()t]  as y++-co. 

(c) ax ( 2 / y ) ) *  

(d)  The vertical velocity vanishes a t  the surface; since conditions (a),  (b)  and 
(c) together with (2 .6)  determine the boundary-layer part of the vertical velocity, 
this implies a condition on the velocity outside the boundary layer. 

The form of (2 .6)  suggests the solution 

N = I C F ( y ,  k)ekzdk, 

where C is a contour in the complex-lc plane. Condition (b )  suggests that one 
restriction on C will be 

Re(,%) 3 0 on C. (3.4) 

The kernel F then satisfies the equation 

a2F 8F 
r k - -  i - + ( k 3 - i y k ) F  = B(k) ,  

8Y2 aY 

where j cB(k )ekzdk  = 0. 

Thus 

F = exp ( - +rp3-p2/2k + ~p - ipy)  d p  

provided that D is chosen so that 

13.5) 

[exp ( - Qrp3 -p2/2k  + k2p - ipy) ]=  = 1. 

Since N is required to  be bounded for large I y(  the appropriate path for D is the 
positive real axis. When r is non-zero the integral for F converges whatever 
contour C is chosen, otherwise condition (3.4) ensures convergence provided that 

Re(k2) < 0 when Re(k) = 0. 

Consider first the asymptotic behaviour of N for large values of lyl . The second 
derivative of N with respect to z is 

kB(k)exp( -Qrp3-p2/2k+k2p- ipy+kz)dpdk,  
scs,"_o 
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which is asymptotically equal to 

kB(k)ekzdh s, i y - k 2  
if C satisfies Re (k2 )  > 0. 

It later proves to be impossible to  choose a contour which satisfies this condi- 
tion on the whole of its length, but it is only necessary for it to be possible to 
deform C so that this condition is satisfied on all portions of C except those which 
give an arbitrarily small contribution, and this is easily shown to be possible. 

If C is chosen to  be a straight line parallel to the imaginary axis in Re ( k )  > 0, 
these conditions are all satisfied, and the contour can be deformed to show that 

a2N/dz2 N nB[(iy)$] exp [a ( iy ) * ]  as IyI +a, 

where the square root taken has a positive real part. If B is chosen to  be - 11. the 
asymptotic conditions are then satisfied, and N has the form 

"s - exp ( - +p3 -p2/2Jc + k2p - ipy  + kz) dp dk. 
7T c p = o k  

The expression for N,, can be written as 

The inner integral is absolutely and uniformly convergent for all positive and 
zero values o fp  and - z. Scaling p with z2 then shows that the expression tends to 
- 1 as z tends to zero from below, and hence the surface boundary condition (3.1) 
is satisfied for all values of y. Since the expression tends to zero as IzI +a, the 
solution is of boundary-layer type. 

Expression (3.6) can be integrated numerically and the velocity components 
compared with the corresponding Ekman layer (3.3).  This comparison is shown 
in figure 1 for the special case r = 0, in which the effects of the horizontal com- 
ponent of the eddy viscosity are neglected. I n  figure 2 the comparison is shown 
for the corresponding solution of the equation 

a3N a3N . aN -+- = z,yz.  
a y v z  a 9  13.7) 

This represents the other extreme example in which the horizontal eddy viscosity 
is assumed to be much more important than the horizontal component of the 
rotation vector. The solution of this equation is 

* l  
-- - - '1 -exp ( - &p3 - ipy - z2/4p)dp. 
aN 

47~ o JP 
The scaling of y' and z' is different here, and is chosen for direct comparison 

with the Ekman layer given in (3.3).  This boundary layer can be superimposed on 
Gill's solution for the equatorial undercurrent in order to satisfy the surface 
conditions. In  particular, it  can be shown that this combination satisfies condition 

The solution of (3 .7)  has been found numerically by D. McKee and is shown in 
Gill's paper superimposed on the solution he found for the region of the ocean far 

(4. 
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FIGURE 1. Contours of velocity components for unit surface stress as functions of y and z 
neglecting horizontal eddy viscosity. The broken lines indicate contours for the corre- 
sponding Ekman layer. Here, z = (4P/lRv2)*d and y = (2nR2/~)*q5, whcre d is depth 
from the surface and q5 is the angle of latitude. (a )  Velocity component to the North. (b)  
Velocity component to the West. 

from the surface. Like the numerical solution in Gill's paper, figure 2 shows that 
there is a strong westward velocity in the boundary layer, and that it falls off with 
depth and with increasing latitude. Reverse flow occurs a t  a depth which in- 
creases as the equator is approached, but there is no eastward flow a t  the equator. 
The northward velocity component a t  the surface increases from zero to a 
maximum from which it falls as the solution becomes more like the Ekman 
layer. The upwelling into the boundary layer is given by Gill: an alternative 
expression for it can be found from (3.8) and is 

jy pe-fp3 cospy dp; 

this gives an upwelling near to the equator but farther away there is a downward 
flux with velocity approximately equal to l/y2. 
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(b)  

Equation (2.6) has been solved numerically with Y equal to zero by Philander 
(1 97 i), who used a constant-velocity surface condition in the meridional direction. 
The solution shown in figure 1 has the same qualitative features as that shown in 
figure 3 :  the main difference is that the region of reverse flow in the westward 
velocity field reaches to the equator. This can be compa.red with the same feature 
which appears in the northward velocity component of Philander’s solution. 

These figures illustrate the fact that the velocity component decreases rapidly 
away from the surface and that the boundary layer is not singular at  the equator. 
In this last property they are therefore quite different from the Ekman layer. 

The author is grateful to the referees for the paper, whose suggestions have 
materially improved the presentation. 

FIGURE 2.  Contours of veIocity components for unit surface stress as functions of y and z 
with horizontal eddy viscosity but neglecting the horizontal component of the rotation 
vector. Here, 2 = (4Q27/R2v3)*d and y = (2RR2/71))q5, where d is depth from the surface 
and q5 is the angle of latitude. The broken lines indicate contours for the corresponding 
Ekman layer. (Note that q appears in the scaling of y as well as of z,  in such a way that 
the dimensional Ekman thickness for large values of y is independent of 7, as i t  should be.) 
(a) Velocity component to  the North. ( b )  Velocity component to the West. 
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